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Runtime verification as a field faces several challenges. One key challenge is how to keep the
overheads associated with its application low. This is especially important in real-time critical
embedded applications, where memory and CPU resources are limited. Another challenge
is that of devising expressive and yet user-friendly specification languages that can attract
software engineers. In this paper, it is shown that for many systems, in-place logging provides
a satisfactory basis for postmortem “runtime” verification of logs, where the overhead is
already included in system design. Although this approach prevents an online reaction to
detected errors, possible with traditional runtime verification, it provides a powerful tool
for test automation and debugging—in this case, analysis of spacecraft telemetry by ground
operations teams at NASA’s Jet Propulsion Laboratory. The second challenge is addressed in
the presented work through a temporal specification language, designed in collaboration with
Jet Propulsion Laboratory test engineers. The specification language allows for descriptions
of relationships between data-rich events (records) common in logs, and is translated into a
form of automata supporting data-parameterized states. The automaton language is inspired
by the rule-based language of the RULER runtime verification system.A case study is presented
illustrating the use of our LOGSCOPE tool by software test engineers for the 2011 Mars Science
Laboratory mission.

I. Introduction

RUNTIME verification encompasses the discipline of checking execution traces against formal specifications. Two
of the key problems are: 1) how to obtain execution traces with minimal impact on observed software, and without

over-burdening the user with the need to implement instrumentation and 2) how to design a specification language
that is expressive, yet user-friendly. This paper reports on an experiment addressing both these issues, a combination
that we call “low-impact” runtime verification. In summary, the paper argues that analyzing log information removes
the instrumentation burden in the sense that logs usually are already produced by most critical software systems.
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Consequently, no additional impact on the running software is imposed beyond the already implemented logging.
A log is a recorded sequence of events. We argue that systematizing logging can be of additional benefit. Second,
we introduce a textual temporal logic-inspired specification language over events for specifying properties of logs.
This language supports data-parameterization, essential for monitoring logs (events typically carry data). Specified
properties, called patterns, are translated into data-parameterized automata forming an interesting and useful subset
of the textual RULER language [1–4]. Users can mix patterns with more expressive automata in a specification.
Parameterized automata are visualized using the GRAPHVIZ tool [5]. Our system additionally offers preliminary
support for automatically constructing (learning) specifications from example logs. The log analysis framework,
LOGSCOPE, is developed to support engineers testing the flight software for NASA’s next Mars rover mission, the
Mars Science Laboratory (MSL) [6], developed at the Jet Propulsion Laboratory (JPL). In this sense the work
represents an instance of the often sought marriage between theory and practice in formal methods.

The MSL mission’s goal is to put the so-far largest rover (the size of a compact car) on Mars for continued
exploration of the red planet. It is scheduled for launch in 2011. A flight software team peaking at approximately
30 programmers develops the software for controlling the rover compute element, which controls all stages of the
integrated spacecraft. A testing team of approximately 10 engineers (the Flight software Internal Test, or FIT, team)
is responsible for functional testing of the flight software. LOGSCOPE was developed to support this team, and is the
result of their requirements as well as our research ideas. The MSL flight software produces rich log information,
which is stored in SQL databases (one database per log). A log is in essence a sequence of time-stamped events, where
an event can be one of several forms, corresponding to input to and output from the system, as well as internal state
transitions and state readings. Each event is in essence a mapping from field names to values (a record). Such logs
are usually far too large to be analyzed effectively by humans. Traditionally, these MSL logs have been analyzed
by writing scripts, with properties coded up in PYTHON. Such scripts are time consuming to produce and result in
difficult-to-read “specifications” that hinder communication, maintenance, specification-sharing, and reuse. Based
on our experience with LOGSCOPE, runtime verification of logs using formal specifications has excellent potential as
a route to introduce lightweight formal methods into a high-profile NASA flight project.

A. Contributions and Related Work
The contribution of this work is the design of a simple, user-friendly, and yet for practical purposes sufficiently

expressive data-parameterized temporal specification language, with a translation into data-parameterized automata,
which are themselves usable for specification. A second contribution is the injection of this technology into a NASA
flight mission. The LOGSCOPE system has specifically been influenced by the RULER system [1–4]. In particular, the
automaton language conceptually forms a subset of RULER. LOGSCOPE can be seen as an adaptation of RULER to
the specific needs of MSL: adding temporal logic, enhancing usability, and implementing it in PYTHON to integrate
with the existing scripting culture. LOGSCOPE has also been influenced by the state machine-based systems RCAT [7]
and RMOR [8]. The relationship between LOGSCOPE and RULER is illustrated in [1], whereas the process that led to
LOGSCOPE is presented in [9].

Within the last decade, a substantial body of work has been produced on runtime verification [10], e.g., to
mention just a few approaches, over and above the work referenced above, consider [11–21]. Each of these is
characterized by several dimensions, such as the specification logic they support, the way in which they connect
with the application being monitored, the way in which monitors are generated for the propositional (data-free)
case, and the way in which they handle data values. LOGSCOPE offers a user-friendly logic, avoiding some of the
pitfalls of LTL (such as the need for nested until-formulas for expressing sequencing). By analyzing log files, the
issue of code instrumentation becomes a separate problem. Data parameterization is handled through parameterized
automata: a state machine state can carry a vector of data values. The approach is a restricted form of parameterization
mechanisms in the RULER system (see Sec. V.D), however, the basic idea is a special case of the monitor state being
a formula including data. It is also used in our own EAGLE system [12], which offers a very sophisticated logic based
on minimal and maximal fixpoints. The sophistication of this logic caused the implementation to be highly complex.
The HAWK system [14] augmented EAGLE with an event definition language specialized for Java, and monitors
were generated as ASPECTJ [22] aspects. JLO [21,23] generates monitors in a similar way from parameterized LTL

formulas. As explained in [23], the monitor state is a formula including instantiated data values. For example,
consider the LTL formula: �(p(x) ⇒ ♦q(x)) (“always: when p(x) is observed, where x is a binding variable
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name, then eventually q(x) must be observed”). This formula, upon an observed event p(1), will be rewritten as
�(p(x) ⇒ ♦q(x)) ∧ ♦q(1). JLO events are defined by pointcuts inspired by aspect-oriented programming, and
monitors are generated as ASPECTJ aspects.

Often the generality of parameterization mechanisms is sacrificed for optimality.An example is the TRACEMATCHES

system [11], which carries the connection to ASPECTJ to the extreme and extends ASPECTJ with regular expressions.
Data values are handled by annotating state machine states with constraints, and updating these as events are observed.
Chen and Roşu [13] implement a range of traditional logics, such as state machines, temporal logic, regular expres-
sions, and grammars, as different plugins in the MOP system. Data (parameters) are handled uniformly in MOP by
separating them out from the logic plugins, which are all propositional. Monitors are instead indexed by data values.
This makes designing a new logic very easy since only the propositional case needs to be defined. It also makes
monitoring very efficient. Events are generated by definition of pointcuts, and monitors are generated as ASPECTJ
aspects. As already alluded to, the logics supported by these different systems have drawbacks. For example, state
machines are verbose (one has to mention intermediate states), and LTL as well as regular expressions can be difficult
to use.

Software testing researchers [24,25] have also explored formal specifications for checking logs. Chang and Ren
[25] provide a specification language just based on regular expressions. The properties are formulated over actual
textual logs, in contrast to LOGSCOPE properties, which are formulated over an abstraction of the log: a sequence of
records, each of which is a mapping from field names to values. This makes their approach less adaptable to changes
in the log format. Chang and Ren provide interesting empirical data on application to a large telecommunications
system (though it is not clear whether specifications are written by the testers or the research team). Andrews and
Zhang [24] share our focus on lightweight test oracles. They offer an elegant parameterized state machine framework
similar to LOGSCOPE parameterized state machines. Their state machines yield errors in case events occur for which
there are no outgoing transitions. Although we support this concept, we also support state machines where one
can wait in a state until a certain event occurs. This has turned out to be useful in practice for large log files and
occasionally leads to less verbose specifications in the case studies we have looked at. Their state machines are
compiled into PROLOG, preventing an online application of monitoring in case this should be desired. They do not
provide a temporal logic, a concept that we found important for acceptance by engineers.

The PSL specification language [26] combines temporal logic and regular expressions, and in this way has com-
monalities with the LOGSCOPE language. However, PSL is designed for hardware verification and does not support
data parameterization to the degree that LOGSCOPE does. The LOGSCOPE temporal specification language is charac-
terized by integrating temporal logic and a limited form of regular expressions in a very simple manner (there are, for
example, no explicit temporal operators). The LOGSCOPE specification language is much simpler than PSL. Engineers
were able to write properties in less than one hour. Finally, LOGSCOPE offers parameterized state machines, whereas
this concept is not directly supported in PSL. Like PSL and LOGSCOPE, the SALT specification language [27] has been
developed to make specification writing easier for industrial use. SALT is an impressive collection of temporal oper-
ators, which are translated to LTL, or timed LTL in case time constraints are involved. SALT offers operators similar
to LOGSCOPE’s sequencing operator and scope operator (upto, which in SALT is rejecton and accepton). The
goals of PSL and SALT are important. The distinctive features of LOGSCOPE is its simplicity compared with those lan-
guages, although still attempting to improve the usability of LTL, and the fact that LOGSCOPE handles data parameters
over very large (or infinite) data domains, which is not the case for either PSL or SALT.

Mateescu and Thivolle [28] introduce a model checking language (MCL), which augments the modal μ-calculus
with high-level operators aimed at improving expressiveness and conciseness of formulas. The main MCL ingredients
are data-parameterized fixed points, action patterns extracting data values from events, modalities on transition
sequences described using extended regular expressions and programming language constructs. The attempt in [28]
is similar to the work described in [12] on extending the μ-calculus with data and a sequencing (chop) operator for
runtime monitoring. However, although very expressive we do not believe that formulas in MCL are necessarily easy
to write for engineers. Our framework is simpler and directly applicable to formulate the kinds of properties needed
for our case studies.

Coen-Porisini et al. [29] introduce the PDL specification language for stating properties about programs, to be
verified using symbolic execution. The specification language has some similarities with our pattern language in
providing a form of sequencing operator and allowing for negation of events. However, PDL is limited in the alternation

367



BARRINGER ET AL.

between positive and negative events allowed. More important, events can only be program labels. There is no support
for data parameterization.

Dillon et al. introduce in [30] the Graphical Interval Logic (GIL) for specifying the behavior of concurrent systems.
The logic is quite powerful and addresses the problem of usability of propositional temporal logic. However, the
GIL logic is considerably more complex than the logic presented here, making fast learning by test engineers less
likely. The LOGSCOPE language is textual as opposed to GIL, which is a graphical notation. It has been our experience
that test engineers work faster with a good textual notation rather than a graphical notation. It also makes it easier
to auto-generate specifications. Finally, GIL does support some form of data quantification. However, there are no
algorithms provided for monitoring such unless the type quantified over is finite and known [31].

The work in [32] describes a set of specification patterns often encountered in work on verification. Each pattern
focuses on one specific property format, such as, for example, the response pattern (P should always be followed
by Q). A central part of these specification patterns are scopes, which LOGSCOPE to some degree has implemented
in terms of the upto construct. Our experience is that our general language is simple enough for engineers to work
with, and that special patterns are not necessarily needed. This is in fact the strength of the proposed language in our
belief. The specification patterns in [32] do not deal with data, and it would likely be a research topic to extend the
patterns with such.

B. Outline of Paper
Section II describes the process that lead to the design of the LOGSCOPE specification language and system. Section

III describes how log files are constructed for the MSL flight software, forming the foundation of a through-going
example. Section IV introduces the temporal pattern language, whereas Sec. V introduces the automaton language
and illustrates how patterns are translated to automata. Section VI briefly describes the learning feature. Section VII
describes the results of the MSL case study in more detail. Section VIII finally concludes the paper and suggests
future work. An appendix contains the complete grammar for the LOGSCOPE specification language.

II. Tool Development Process
The LOGSCOPE tool and pattern language grew out of the needs of engineers. In fact, the earliest effort to “mockup”

a specification came from an MSL test engineer. The “specification” was a comment in a PYTHON script describing
the purpose of the script as follows:

look:DRILL_DMP\
evr(CMD_DISPATCH,positive)\
evr(CMD_COMPLETED_SUCCCESS,positive)\
evr(CMD_COMPLETED_FAILURE,negative)\
chan(id:CMD-0004,positive,contains opcode

of last immediate command)\
chan(id:CMD-0007,positive)\
chan(id:CMD-0001,negative)\
chan(id:CMD-0009,negative)\
prod(name:DrillAll,1,*)

The script represents the following property to be checked: when an issued DRILL_DMP command is observed in
the log, then the events with positive as an argument should follow in any order, and the events with negative
as an argument should not occur. For example, the following evr (event report) events should follow: a report of
the dispatch (CMD_DISPATCH) of the command; a report of the success (CMD_COMPLETED_SUCCCESS) of the
command; and there should not be an evr reporting failure (CMD_COMPLETED_FAILURE) of the command. Then
follows some requirements on samplings of the state (channel events). For example, there should be a sampling
of state variable CMD-0004 that, informally stated, contains the opcode of the last immediate command. Finally,
the flight software should downlink a DrillAll product (a prod event) to ground informing about the status of
the drill. “To downlink” is NASA terminology for sending information from spacecraft to ground.
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Commands Products 

Transitions 

State samples State changes 

Fig. 1 Observable events of a system.

The core elements of our temporal pattern language—the events, all originate in the telemetry system of the MSL
flight and ground software. These events correspond to the generalized view of a “system” shown in Fig. 1. An
operations team on the ground issues commands to the spacecraft, e.g., DRILL_DMP in the sample specification.
The spacecraft software responds to commands by causing transitions. Transitions in turn cause the local state to be
updated. State changes can be observed either in terms of “random” state samples that provide a snapshot of current
spacecraft state, or more precisely by observing the actual state changes when they occur. Finally, data products
are the “outputs” of the spacecraft downlinked to the ground, including engineering telemetry, images, and science
instrument data. These different event kinds are referred to in the logs (see Fig. 2) as, respectively: COMMAND, EVR
(EVent Report = transition), CHANNEL (state sampling), CHANGE (state change), and PRODUCT. Although these
MSL concepts are very general (should cover any system) LOGSCOPE can be adjusted to work with other forms
of events.

To a large extent, the development of the pattern language that followed was a process of taking this early draft
and preserving its essential elements while expanding its expressive power and readability, guided by usage, engineer
requests, and language design considerations. For example, we preserved the structure of properties, each having
the form: E ⇒ C, where E is an event and C is a consequence, for example, a sequence of events. However, more
complex specifications were required. In the original mockup, the events specified positive in C were allowed to
occur in any order in the log. The first implementation prototype introduced a way to distinguish ordered lists from
unordered sets of events, which proved critical to real specifications.

The original test infrastructure, as suggested by the FIT team, provided an event registry, which was a PYTHON

library with methods allowing test scripts to create, alter, and delete online monitors for telemetry events. In principle,
the registry provided a set of tools sufficient for analyzing tests at runtime, and a specification and debugging
mechanism well-integrated with established testing procedures. In practice, the registry approach was seldom adopted
by engineers (and proved frustrating when used) for the following two primary reasons:

1) Ordering and timing of events: Events on the spacecraft are not downlinked to the ground system in chrono-
logical order. Different channels, data products, and EVRs have different priorities, and the “Earth receive
time” ordering of two events will often be the opposite of their event times. Test engineers were forced to
either introduce lengthy delays after each test step or build very complicated logic to disentangle events
arriving out-of-order and “recreate” a linear chronology of events (which is sometimes only possible after
test termination). A strategy of pausing long enough to allow telemetry to arrive proved brittle, as timeouts
fluctuated with each software release.

2) Confusion of test execution and test evaluation: A motivation for the event registry was that it seamlessly
integrated with the idea of tests as scripts with logic, looping, and other programming language features.
Unfortunately, test scripts that were clearly readable when their task was limited to commanding the spacecraft
became difficult to follow when test execution was interlaced with test evaluation.
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...

COMMAND 7308 {

Args := [’CLEAR_RELAY_PYRO_STATUS’]

Time := 51708322925696

Stem := "POWER_HOUSEKEEPING"

Number := "4"

type := "FSW"}

EVR 7309 {

message := "Dispatched immediate command

POWER_HOUSEKEEPING: number=4,

seconds=789006392, subseconds=1073741824."

Dispatch := "POWER_HOUSEKEEPING"

Time := 51708322925696

name := "CMD_DISPATCH"

level := "COMMAND"

Number := "4"}
...

EVR 7311 {

name := "POWER_SEND_REQUEST"

Time := 51708322925696

message := "power_queue_card_request-

sending request to PAM 0."

level := "DIAGNOSTIC"}

EVR 7312 {

message := "Successfully completed command

POWER_HOUSEKEEPING: number=4."

Success := "POWER_HOUSEKEEPING"

Time := 51708322944128

name := "CMD_COMPLETED_SUCCESS"

level := "COMMAND"

Number := "4"}

EVR 7313 {

name := "PWR_REQUEST_CALLBACK"

Time := 51708322944128

message := "power_card_request -

FPGA request successfully sent to

RPAM A."

level := "DIAGNOSTIC"}

CHANNEL 7314 {

channelId := "PWR-3049"

DNChange := 67

dnUnsignedValue := 1600

type := "UNSIGNED_INT"

Time := 51708323217408

ChannelName := "PWR-BCB1-AMP"}
...

COMMAND 9626 {

Args := [’set_device(1)’, ’TRUE’]

Time := 51708372934400

Stem := "RUN_COMMAND"

Number := "18"

type := "FSW"}

EVR 9627 {

message := "Validation failed for command

RUN_COMMAND: number=18."

DispatchFailure := "RUN_COMMAND"

Time := 51708372934499

name := "CMD_DISPATCH_VALIDATION_FAILURE"

level := "COMMAND"

Number := "18"}
...

Fig. 2 A simplified log.
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Neither of these problems is particular to MSL. The first problem is generic to any distributed system in which
constructing an event timeline is nontrivial (before queues clear), and the second problem is a general observation
about test case readability. Test engineers reacted to these problems by making little use of the registry, despite having
requested its features. How, then, were test engineers evaluating tests? In many cases, they were hand-scripting a
post-test analysis of all telemetry (ad hoc construction of very limited logs). A few checks were routinely performed
online, but more complex analysis was often delayed until the test was complete, and chronological confusion could
be partially avoided by counting expected responses.

Team management (also active in writing tests) recognized that building ad hoc test-specific “log analysis” systems
was not an effective use of mission time, and that scripting logic only partially addressed both problems with the
registry. The DRILL_DMPmockup emerged after a series of team meetings and discussions, informed by our ideas of
log analysis. MSL flight software management suggested that a unified logging scheme would be useful to developers
outside the test team.After an initial trial run in which the research team replicated the hand-scripted results of random
command regressions, the FIT team began use of prototype versions of the logging system, replacing hand-scripted
test evaluation code, as described in more detail in Sec. VII. The research team suggested the use of square and curly
braces to indicate lists and sets of events, respectively, and the use of bindings for data values. Other features, including
indexed data fields (e.g., bit-vectors), SQL query filtering of events, scoping of specifications (Sec. IV.F), and learning
(Sec. VI), were requested by the test team. A specification language emerged, starting with a syntax and informal
semantics inspired by the original mockup, powerful enough to support test needs, and simple enough to actually use.

III. Logs
The first step in analyzing the behavior of the MSL flight system is to produce a log—an ordered sequence of

events. A log is extracted from a database of spacecraft telemetry maintained by JPL ground software. The ground
software will be used by mission operations to communicate with the spacecraft and rover, and is used both in MSL
hardware testbeds and software simulation. The ground system stores events of each system execution as entries in
an SQL database specific for that execution (an approach also considered in runtime verification literature [33]).

The log extracted from such a database is simply an ordered list of named records (effectively a sequence of
dictionaries in PYTHON). All MSL-specific aspects of the log are handled by the log extractor tool (LOGMAKER),
making LOGSCOPE easily adaptable to any system producing logs: one just has to replace the log extractor. Different
kinds of events in the database provide different fields (e.g., EVRs have a message but no value, whereas channels
have a value but no message). Rather than forcing a single representation on these event types, we allow different
events in the extracted log to have varying fields, but ensure that each event has 1) a type and 2) a timestamp. The
type is used in specifications as shown below, and the timestamp allows us to order the event sequence.

Figure 2 shows a simplified print of a log by our tool after testing of the power subsystem. Details have been
modified in order to not reveal the exact nature of the log. The example includes COMMAND, EVR, and CHANNEL
events. The fields of the events are shown within curly brackets, except for the object type, which appears before the
bracket. In addition to fields present in the original database, our system annotates events with derived fields that
ease readability and specification. A derived field is computed from fields in the data base, yielding additional useful
information. Field names from the MSL database begin in lowercase, whereas derived fields (e.g., Dispatch)
begin in uppercase. The Time field, used to order events, is always derived. Events that take place on the spacecraft
include a spacecraft event time (omitted here) that establishes a canonical order. However, command events originate
from the ground, and include only a transmission time. We establish a uniform chronology by extracting the time a
command is dispatched on the spacecraft from the time information in the message of the subsequent dispatch EVR
event—the Time field of COMMAND 7308 is extracted from the message in EVR 7309. Use of our tool by test
engineers has increased the MSL software team’s awareness of ambiguities in the timing of events originating on
the spacecraft, suggesting that improved synchronization is needed between modules responsible for different types
of telemetry.

IV. Pattern Language
Monitors are written in the LOGSCOPE specification language. A specification consists of one or more specification

units, each of which is either a temporal logic pattern, or a parameterized automaton:
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〈specification〉 → 〈monitorspec〉+

〈monitorspec〉 → 〈pattern〉 | 〈automaton〉
In this section, we focus on temporal patterns, which are automatically translated into parameterized automata.

A. Simple Response Patterns
Consider as an example the following informally stated property:

R1: “Whenever a flight software command is issued, then eventually an EVR should indicate success of that command”.

Before we can formalize this property, it needs to be refined to refer to the specific fields of events. The following is
such a refinement:

R′
1: “Whenever a COMMAND is issued with the Type field having the value "FSW", the Stem field (command name) having

some unknown value x, and the Number field having some unknown value y, then eventually an EVR should occur, with the
field Success mapped to x and the Number field mapped to y”.

The Number field is a sequence number indicating the order in which commands are received by the spacecraft for
dispatch. Subsequent commands should have increasing numbers. Events related to command execution have the
number of the command. In our language, this property reads:

pattern P1:
COMMAND{Type:"FSW",Stem:x,Number:y} =>

EVR{Success:x,Number:y}

This pattern (pattern is a keyword) has the name P1 and states that if a command is observed in the log at a position
i, with the Type field having the exact string value "FSW", the Stem field having some value x, and the Number
field having some value y, then later in that log, at a position j > i, an EVR should occur with a Success field
having x as value and a Number field having y as value. Informally, we can explain the semantics of this formula
in terms of the following formula in an LTL [34] with quantification over data variables:

∀x, y •
�(COMMAND{Type:"FSW", Stem:x, Number:y} ⇒

♦EVR{Success:x, Number:y})

The temporal operators � and ♦, as well as the universal quantification ∀, are implicit in LOGSCOPE’s pattern notation.
The pattern has the following form:

〈pattern〉 →
pattern 〈NAME〉 ":" 〈event〉 "=>" 〈consequence〉

〈consequence〉 →
〈event〉
| "!" 〈event〉
| "["〈consequencelist〉"]"
| "{"〈consequencelist〉"}"

〈consequencelist〉 →
〈consequence〉 (","〈consequence〉)∗

This example shows the simplest case, where the consequence is an event. The other alternatives will be explained
in the following subsections. The event triggering the pattern is a command event here, but can be any kind of event.
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Each event is constrained (between {...} brackets) by zero or more constraints, each consisting of a field name
(without quotes) and a range specification. We saw two forms of range specifications: the string "FSW" for the field
Type and the names x and y for the other fields. A string constant represents a concrete constraint: the field in the
event has to match this value exactly (by PYTHON equality ==). One can also provide an integer as such a concrete
range constraint. Ranges can also be multivalued, such as integer intervals, as will be shown below.

An unquoted name (x and y in this case) occurring as a range indicates, at specification time, an unknown value.
The first occurrence of such a name in a pattern is binding: it will be bound to the value of the corresponding field
in the matching event. Any subsequent occurrences of this name in the pattern are now constraining: for a match to
occur, the corresponding fields now should have the values these names were bound to by the binding event. The log
in Fig. 2 satisfies this specification for the first command, as the command is matched by a success. The property
fails for the second command.

B. Negation of Events
A consequence can also be the negation (“!”) of an event. Suppose we want to state the following property:

R2: “Whenever a COMMAND is issued with the Type field having the value "FSW", the Stem field having some value x,
and the Number field having some value y, then there should thereafter not occur an EVR, with the field Failure mapped
to x and the Number field mapped to y”.

We express this by the property (which the log from Sec. III satisfies):

pattern P2:
COMMAND{Type:"FSW",Stem:x,Number:y} =>

!EVR{Failure:x,Number:y}

C. Composite Consequences
We have seen that the consequence of a pattern can be an event, as in pattern P1, or the negation of an event, as

in pattern P2. There are two more forms: ordered and unordered sequences of consequences (a recursive definition).
The square brackets [...] indicate that the consequences should occur in exact order, whereas the curly brackets
{...} indicate that they may occur in any order. The symbols are chosen for their frequent use in literature to
represent ordered lists and unordered sets. As an example, consider the following requirement:

R3: “Whenever a flight software command is issued, there should follow a dispatch of that command, and then exactly one
success of that command. Before the dispatch there should be no dispatch failure, and in between the dispatch and the success
there should not be a failure”.

Requirement R3 is in Fig. 3 illustrated as a timeline, much like in TIMEEDIT [35], showing events that could/should
occur, and constraints on events that should not occur. Note, however, that TIMEEDIT does not support data param-
eterization, only temporal ordering of atomic events. The property can be stated formally as follows, in a form that
very closely reflects the timeline.

pattern P3 :
COMMAND{Type:"FSW",Stem:x,Number:y} =>

[
!EVR{DispatchFailure:x,Number:y},
EVR{Dispatch:x,Number:y},
!EVR{Failure:x,Number:y},
EVR{Success:x,Number:y},
!EVR{Success:x,Number:y}
]
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Fig. 3 Requirement R3 expressed as a timeline.

The consequence consists of a sequence (in square brackets [...]) of (sub) consequences, in this case events and
negations of events. The ordering means that as a response to the command the dispatch should occur before the
success, and the negations represent what should not happen in between the nonnegated events.

The following first-order LTL formula represents this property. It is suggestive of the extra complication that LTL’s
until operator (“U”) can introduce, and why the pattern language might be easier to use for engineers:

∀x, y •
�(COMMAND{Type:"FSW",Stem:x,Number:y} ⇒

¬(EVR{DispatchFailure:x,Number:y} ∨ EVR{Dispatch:x,Number:y}) U
(EVR{Dispatch:x,Number:y}
∧ (¬(EVR{Failure:x,Number:y} ∨ EVR{Success:x,Number:y}) U

(EVR{Success:x,Number:y}
∧ ©�¬EVR{Success:x,Number:y}))))

Linear time temporal logics have by several authors been extended with chop operators (“;”), for example, [36].
This eliminates the nesting problem of the until operator, although a recoding of the given example (and adding
quantification over data variables) is still nontrivial:

∀x, y •
�(COMMAND{Type:"FSW",Stem:x,Number:y} ⇒

(¬(EVR{DispatchFailure:x,Number:y} ∨ EVR{Dispatch:x,Number:y}) U
(EVR{Dispatch:x,Number:y} ∧ © fin);

¬(EVR{Failure:x,Number:y} ∨ EVR{Success:x,Number:y}) U
(EVR{Success:x,Number:y} ∧ © fin);

© �¬EVR{Success:x,Number:y}))

The fin predicate is true on the empty trace. The chop (in [36]) is overlapping, and hence the need to apply the ©
operator to the final � term. As an example of an unordered arrangement of events, consider the following (perhaps
less meaningful) relaxation of the above stated property:

R4: “Whenever a flight software command is issued, there should follow a dispatch of that command and exactly one success
of that command, in no particular required order. There should be no dispatch failure and no failure at any time”.
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We formalize this as follows:

pattern P4 :
COMMAND{Type:"FSW",Stem:x,Number:y} =>

{
EVR{Dispatch:x,Number:y},
[

EVR{Success:x,Number:y},
!EVR{Success:x,Number:y}
],
!EVR{DispatchFailure:x,Number:y},
!EVR{Failure:x,Number:y}
}

The curly brackets {...} indicate an unordered collection of consequences (a Boolean “∧” effectively). This
corresponds in this case to four parallel timelines, all of which must be satisfied. The fact that they are unordered
means that the non-negated events can occur in any order (but must occur eventually), and negations have to hold to
the end of the log. Nested inside the unordered {...} construct there is, however, an ordered sequence expressing
that after a success there should not occur another success. As the grammar for consequences suggests, ordered and
unordered collections of consequences can be mixed arbitrarily.

D. Event Predicates
Events can be constrained with predicates. Consider the following requirement:

R5: “The success of a command with a number y should never be followed by the success of a command with an equal or
lower number z � y”.

The following pattern formalizes this requirement.

pattern P5 :
EVR{Success:_,Number:y} =>

!EVR{Success:_,Number:z}
where {: z <= y :}

Note that this formula ignores which commands succeed (the underscore “_”). The constraining predicate is:
{: z<=y :} and is a general PYTHON expression enclosed by the symbols {: . . . :}. This expression can refer to
all of PYTHON’s directly available features, in addition to a LOGSCOPE-specific predefined library of predicates. Should
this not suffice, it is possible to import PYTHON libraries or directly define PYTHON predicates in the specification.
The following specification defines a PYTHON predicate within(t1,t2,max), which checks that the two time
points t1 and t2 are at most max time units apart.

{:
def within(t1,t2,max):

return (t2-t1) <= max
:}

pattern P6:
COMMAND{Type:"FSW",Stem:x,Number:y,Time:t1}

where {:x.startswith("PWR"):} =>
EVR{Success:x,Number:y,Time:t2}

where within(t1,t2,10000)
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PYTHON code must occur at the beginning of the specification file and be delimited by the symbols {: . . . :}. This
predicate is then used to check that power commands (having names starting with "PWR") succeed within maximally
10,000 time units. The x.startswith(y) method is a PYTHON built-in, returning true if the string y is a prefix
of the string x. Note that it is possible to call a predicate directly without embedding it within the more general code
brackets {: . . . :}. Predicates can be composed using the traditional Boolean operators: or, and, not.

As a matter of convenience there are shorthands for certain predicates that occurred frequently during testing of
the MSL flight software, such as interval checks and indexing operations, in particular bit-indexing in bit-vectors.
The following example illustrates this:

pattern P7 :
COMMAND{Type:"FSW",Stem:"PICT"} =>

[
CHANNEL{Status1:{0 : 1, 4 : x}},
CHANNEL{Status8:{2 : x}},
PRODUCT{ImageSize:[1000,2000]}

]

The requirement states that after a flight software picture command, there should be a channel reading where
the Status1 field denotes an integer, where bit number 0 is 1 (counted from the right), and where bit 4 is
bound to some value x (0 or 1). Thereafter, another channel reading should follow where the Status8 field
denotes an integer, where bit 2 has the value x. Finally a product, should follow, where the field ImageSize
is in the interval 1000–2000. The form of indexing shown for the status fields (Status1 and Status8) gen-
erally works on any data object that is indexable, such as bit-vectors (integers), lists and strings (in both latter
cases indexes must be integers, counting from the left), and dictionaries (maps, allowing for indexing also with
strings).

E. Event Actions
As a more experimental feature (not used by the test engineers), LOGSCOPE allows events to be associated with

actions to be executed when the events match. As an example, consider the following specification, which is a
weakening of property P1. It states that only the first command must be followed by a success EVR.

{:
counter = 0

def count():
global counter
counter = counter + 1

def amongstfirst(limit):
return counter < limit

:}

pattern P8 :
COMMAND{Stem:x}

where amongstfirst(1) do count() =>
EVR{Success:x}

do {: print x + " succeeded" :}
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The specification first introduces a PYTHON code section: a global integer counter, a count() function, and
an amongstfirst(limit) function. If a command still matches the where predicate (it is among the first
1 commands), the do construct is executed, causing the count() function to be called, counting up the global
counter variable. Just as predicates can be referred to by name (without enclosing in {: . . . :}), so can actions
as in this example. The general format of an event is as follows:

〈event〉 →
〈type〉 "{" 〈constraints〉 "}"

[where 〈predicate〉]
[do 〈code〉]

If the user-defined PYTHON code contains the definition of a method final() (without aguments), then this method
will be called at the end of monitoring the properties. This function can, for example, compute and print statistics
based on the state of the global variables introduced. Each specification file has its own PYTHON state. Hence, it is
possible to declare a state local to a subset of properties.

F. Scopes
In some cases one may want to limit the scope in which a pattern is checked, by providing an additional scope-

terminating event. Without such limitations a pattern holds from the point at which its trigger event is matched until
the end of the log. Scopes were introduced in the specification patterns described in [32] and also exist, for example,
in SALT [27] (specifically what is referred to there as exceptions: rejecton and accepton). As an example, one
may want to check that a particular command results in a particular set of events to occur, and some other events
not to occur, up to the next command being fired. Consider, for example, pattern P4 in Sec. VI.C. According to the
semantics, whenever a flight software command is detected in the log, the consequence is checked on the rest of the
log, to its end; that is, any required event such as the dispatch can occur anywhere in the rest of the log, and negative
events, such as failures, are checked on the remaining log. We might, however, limit these checks to be performed
up to the next flight software command (satisfying COMMAND{Type:"FSW"}). This is done by adding the scope
delimiter upto COMMAND{Type:"FSW"} as follows:

pattern P9 :
COMMAND{Type:"FSW",Stem:x,Number:y} =>

{
EVR{Dispatch:x,Number:y},
[

EVR{Success:x,Number:y},
!EVR{Success:x,Number:y}
],
!EVR{DispatchFailure:x,Number:y},
!EVR{Failure:x,Number:y}
}
upto COMMAND{Type:"FSW"}

This means that positive events such as the dispatch have to occur before the next flight software command, and
negative events, such as failures, are only checked for (forbidden) up to the next flight software command. The syntax
for patterns is now expanded to include an optional scope-specification:

〈pattern〉 →
pattern 〈NAME〉 ":" 〈event〉 "=>" 〈consequence〉
[upto 〈event〉]
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V. Automaton Language
LOGSCOPE also allows testers to write properties as parameterized finite-word ∀-automata, a more expressive, but

lower-level language than the pattern language. A ∀-automaton is a nondeterministic automaton for which accepted
sequences have to be accepted in all possible runs. In traditional nondeterministic ∃-automata, an accepted sequence
only has to be accepted in one possible run. Patterns are automatically translated to automata. The automaton
language forms a subset of the powerful rule-based RULER specification language [1–4], with some modifications.
The automaton language has been designed to be sufficiently expressive to support the actual encountered needs of the
MSL testing engineers, and yet as simple as possible to minimize learning effort. RULER is a much more comprehensive
specification language, resembling a functional stream programming language. The differences between LOGSCOPE

and RULER are explained at the end of this subsection.
In LOGSCOPE, an automaton is expressed in terms of states and transitions between states triggered by events.

Events are exactly as defined for patterns. Just as events can be parameterized with values, so can states be parame-
terized, carrying values produced by incoming transitions. Automata, handwritten as well as translated from patterns,
can be visualized with GRAPHVIZ [5]. Automata are stored in GraphViz’s dot format for diagrams. Automata visu-
alization has proved useful for users of the pattern language when trying to ensure that their patterns express
what is intended; we believe that textual development with graphic visualization is a very effective method for
experienced test engineers. We illustrate the automaton language by presenting the automata for patterns P3
and P4.

A. Automaton for Pattern P3
The automaton corresponding to pattern P3 is shown in Fig. 4 and visualized in Fig. 5. The automaton consists of

four states: S1, S2, S3, and S4, where the first mentioned state is the initial state (can also be identified via an initial
keyword, as there may be several initial states). There is one transition exiting S1: this transition is triggered by a
flight software command, binding x and y, and entering state S2(x,y)with x and y now bound to the actual values
in the matching event—an example of a state parameterized with data. The S1 state is an always-state, meaning that
it is always active, waiting for any command observed. As such several instances of S2(x,y) can be active at any
point in time, each binding different values to x and y.

Fig. 4 The automaton A_P3 for property P3.
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Fig. 5 Visualization of automaton A_P3.

States S2 and S3 are so-called hot states, meaning that instances of these states should be left (disappear) before
the end of the log is analyzed; if not, it is regarded as an error. They are used to model that some event must occur
before the end of the log. It is also possible to declare states hot with a separate hot-state declaration, as in: “hot
S2, S3”. In this case, state S2, for example, represents the property that a dispatch should occur (with no previous
dispatch failure). The first exiting transition is matched by any EVR with a DispatchFailure field with a value
equal to the parameter x and a Number field with a value equal to the parameter y; and similarly for the second
transition. There are two special states: the error state (indicating error) and the done state (indicating successful
termination of a branch of the automaton). The state S4 is a normal state (not an always-state and not a hot-state),
meaning that it is acceptable to finish monitoring in that state. Its purpose is to check that there are no further successes
after the first, for a particular command x with number y.

Automaton visualization uses different symbols for the different states: a gray state represents an initial state, a
white circle represents a normal state, a black circle represents an error state, and a downward-pointed pentagon
represents a hot state. The “@” symbol in state S1 indicates an always-state.

B. Automaton for Pattern P4
The pattern P4 is translated into the automaton in Fig. 6 and visualized in Fig. 7. This automaton expresses that

after a command, we want to see a dispatch (state S2) and a success (state S3), and after that no further success
(state S6), but in no particular order, and that there should not at any time be a dispatch failure (state S4) or a failure
(state S5). The transition of state S1 enumerates several target states, all of which become active when the transition
fires, and all of which must lead to success: no error states should be entered and at the end no hot states should be
active. The states can be said to “execute in parallel”. The visualization of this automaton uses an upward-pointing
triangle (similar to a “∧”) to describe a transition with multiple targets. Note that done is visualized as a white circle
(a normal state) labeled #done.
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Fig. 6 The automaton A_P4 for property P4.

C. Other Language Concepts
The specification language offers a number of additional features. These include a notion of success states, a dual

to hot states. Occasionally, it can be more convenient to express a property using success states: at least one of these
must be reached by the end of the log analysis. States can also be defined as step states, meaning that in case the next
event does not trigger one of the transitions, monitoring along that path is terminated. This is not an error, unless it
means that some success state is not reached. This concept is specifically used during learning.

The language supports both C-style multiline comments (/*...*/) and PYTHON-style single-line trailing com-
ments (#...). Furthermore, it is possible to ignore a pattern or automaton by prefixing the declaration with the
keyword ignore. This is useful for switching specifications on and off, as an alternative to commenting them out.

As mentioned earlier, the automaton language is more expressive than the pattern language. Recall that a pattern
has the form: event => consequence; that is, the antecedent is a single event. It is therefore currently not possible
to write a pattern, for example, of the form: [e1, e2, e3] => e4, with the intended meaning that if events e1, e2, and
e3 occur, then e4 should occur, despite this property being easily expressed in the automaton language. The pattern
language can, of course, be extended to also allow this form of property (work in-progress).

D. Relationship to RULER

As mentioned above, the LOGSCOPE automaton language forms a simplified subset of the RULER language needed
for translating the pattern language. As such it represents an interesting simple but powerful language, focusing on
data parameterization, for writing monitors. The RULER concepts that have been ignored are the following. Whereas
LOGSCOPE supports state machines where a transition in one state is triggered by one event and leads to a conjunction
of resulting states, RULER is indeed a rule-based system, where a transition can be triggered by a conjunction of
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Fig. 7 Visualization of automaton A_P4.

states, events, and negations of such; and where the result is a disjunction of conjunctions of states and negations of
such (negating a state means removing it). In RULER disjunction is used to represent alternative ways of achieving
success. Note that what is referred to as a state in LOGSCOPE is referred to as a rule activation in RULER. RULER

in addition has a notion of super state, similar to that in statecharts/UML. In RULER, templates (which correspond
to LOGSCOPE automata) can themselves be parameterized with data as well as with other templates, making RULER

higher order. Furthermore, various combinators exist for composing templates (sequential compositon, conditionals,
parallel composition, etc.).

E. Type Checking
In addition to the types of events, we must consider the types of event fields. User specifications are statically

type-checked to ensure consistencies within a specification; we omit the details of this very standard (and, in this
case, fairly trivial) process. Unfortunately, static checking does not detect the most common and serious type errors:
inconsistencies between a specification and a log. Because we provide a very flexible specification language, agnostic
as to the deep structure of events, we must handle these dynamic type errors at run-time, when we can compare
with a log. Dynamic type errors can be divided into two classes: field errors and range errors. In field errors, a
field is mentioned in the specification but is not present in the log, often due to misspellings or (less commonly)
undocumented changes to the log database structure by the MSL ground system or flight software. Range errors
generally concern a case where the specification expects one type (i.e., a string, integer, or list) and the log provides
a different type object for the field. Another form of range error is when a specification indexes an event field, but
the index is out-of-bounds (negative or larger than the size of the object). Our (somewhat ad hoc) solution is to
provide users with a list of all patterns and automata that never trigger (which may indicate an error in a field’s name,
or simply an event that did not occur) and all range violations after checking a specification. To improve usability
(and in the spirit of PYTHON) we also provide limited automatic conversions (e.g., of strings containing numbers to
numbers) while still reporting the range error in question.

381



BARRINGER ET AL.

VI. Learning
Writing specifications can be difficult and time consuming. The key problem consists in identifying what properties

to check — even formulated in English prose. An approach is to generate logs during one or more runs, and then look
at (eyeball) the logs while trying to extract correct-behavior patterns. This process can be supported by tools in various
ways. One extreme approach is to attempt to learn automatically a specification from one or more presumably “well
behaved” logs, and then later turn this specification into a monitor to check subsequent logs as part of a regression test
suite. If these differ, for example, due to later code modifications, warnings highlighting the discrepancies are issued.
This approach assumes that a user can judge whether an initial set of logs (those to be learned from) reflect correct
program behavior, and is, of course not a generally sound approach, especially if logs contain thousands of events.
If the initial logs are the result of erroneous program behavior, the learner will learn a wrong specification. However,
as long as error reports are considered with care, this technique is effective for catching bugs and “characterizing”
software that is in a constant state of flux.

LOGSCOPE can learn exact logs it observes up to equivalence on a set of field names that is provided to the learner,
either from a default set or a set (for each kind of event) provided by the user. Two events are considered equivalent if
they are equal with respect to these fields. The learner module, when given several logs, will build an automaton that
represents the set of all logs seen. Common prefixes of the logs will result in a single path through the automaton,
which will eventually form a tree-shape (no loops). The leaf-states are success states (at least one success state must
be reached before the end of the log), and the remaining states are step states (states that must be left in the next step,
hence forcing complete conformance to the automaton; no extra events are allowed).

It is possible to create a new automaton, learn from one or more logs, write back the automaton learned so far to
persistent memory, and then later further refine it via learning or use it for monitoring. This form of learning results
in typically very large automata. The objective is in this case similar to that of comparing logs with UNIX’s diff
command. Here one would possibly also attempt to remove irrelevant event fields, for example, with UNIX’s grep
command. Using an automata-based approach, however, opens up the possibility of more advanced learning of logs,
what we term abstract learning.

The learning facility has not been fully applied but addresses a need by test engineers to i) run a set of nominal
test runs in their office, ii) check by hand that the generated logs conform to expectations, and iii) at a later stage go
to a software/hardware testing laboratory and rerun the tests, this time automatically checking that the results match
those of previous runs.

VII. Usage and Case Study
A. Running LOGSCOPE

LOGSCOPE is called from a PYTHON application as in the following script, which first creates a log (typically by
reading in a log generated by a running program), then creates an instance of anObserver object (given the location
of the specification(s), possibly in a list, as parameter), and then applies the monitor method to the log as follows:

import logscope

log = ... # create a log
observer = logscope.Observer("$MSL/spec")
observer.monitor(log)

Executing the above PYTHON script will generate a file with results as well as a set of GraphViz dot-files visualizing
the generated automata. The results of the monitoring can also be accessed from within the PYTHON script by a
getResults() method, so that they can be processed, e.g., as part of a regression test harness.

Our original log in Fig. 2 violates some of the properties presented in this paper. This is summarized by the system
as follows:
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========================
Summary of Errors:

========================

P1 : 1 error
P2 : 0
P3 : 1 error
P4 : 3 errors
P5 : 0
P6 : 0
P7 : 0
P8 : 0
P9 : 3 errors
A_P3 : 1 error
A_P4 : 3 errors

All these violations are caused by the dispatch failure (and subsequent lack of a dispatch and a success) of the last
command issued (event number 9626). To simplify this presentation, we shall focus on property A_P4 presented in
Sec. V.B and visualized in Fig. 7. This property is similar to P4. A_P4 is violated three times: once because a failure
occurs, and twice because neither a dispatch nor a success occurs. The error messages for the dispatch failure and
the lack of dispatch are listed below.
============================

RESULTS FOR A_P4:
============================

*** violated: by event 9627 in state:

state S4(x,y) {
EVR{DispatchFailure:x,Number:y} => error

}
with bindings:
{’x’:’RUN_COMMAND’,’y’:’18’}

by transition 1 :
EVR{’DispatchFailure’:’RUN_COMMAND’,’Number’:’18’} =>
error

--- error trace: ---

COMMAND 9626 {
Args := [’set_dev(1)’, ’TRUE’]
Number := "18"
Stem := "RUN_COMMAND"
Time := 51708372934400
Type := "FSW"

}

EVR 9627 {
name := "CMD_DISPATCH_VALIDATION_FAILURE"
level := "COMMAND"
Number := "18"
DispatchFailure := "RUN_COMMAND"
Time := 51708372934499
message := "Validation failed for command
RUN_COMMAND: number=18."

}
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*** violated: in hot end state:

state S2(x,y) {
EVR{Dispatch:x,Number:y} => done

}
with bindings:
{’x’:’RUN_COMMAND’,’y’:’18’}

--- error trace: ---

COMMAND 9626 {
Args := [’set_device(1)’, ’TRUE’]
Number := "18"
Stem := "RUN_COMMAND"
Time := 51708372934400
Type := "FSW"

}

The first error message explains the violation that the dispatch failure event number 9627 triggers the error transition
in the state S4, which is listed, including the values that are bound to the state parameters x and y. The error trace
only contains the events that have made the automaton move: the RUN_COMMAND command event and the fatal
dispatch failure event for that command. Since events are numbered, it is easy to locate these events in the real log,
which is also stored with event numbers.

The second error message explains the lack of a dispatch. The hot state S2 is where the monitor rests at the end
of the log, indicating a violation. The only event that moved the monitor with respect to this particular violation is
the initial RUN_COMMAND command, which is the only event listed in the error trace.

B. Application in MSL Testing
As described, our tool and language development was guided generally by the needs of the MSL test engineers.

Our first trial run, initiated at the request of MSL software management, checked the core behavior of the command
dispatch and success protocol shown above as pattern P3, for 400 issued commands (an automated regression test
predating our tool). Using LOGSCOPE enabled us to more easily experiment with the specification compared to what
a test engineer could do using PYTHON. This led to the discovery of a previously uncaptured error, namely, duplicated
success EVRs. A more extensive application, initiated by the test engineer responsible, was the automatic generation
of specifications from tests of the power module. The test engineer replaced previously unreliable on-the-fly queries to
the ground software with code to generate a specification for each tested behavior. Enabling this automatic generation
was a primary motivation for some new language features, including pattern scopes. Again, log analysis revealed
several faulty behaviors in the power and command modules, and revealed subtle issues with the timing of channel
telemetry. The sample log in Fig. 2 is taken from a power test (the full log contains over 11,000 events, including
107 flight software commands). The test engineers responsible for the file verification system (used when the ground
sends files via an uplink to the spacecraft) and the PYRO system (used to fire pyros) also replaced hand-scripted
test code with LOGSCOPE specifications. In the case of the PYRO module, the test engineer needed the capability to
learn a canonical log and compare other logs against the known correct result, a primary motivation for the learning
capabilities of the tool.

We believe that developing the tool in collaboration with the test engineers (and the larger MSL flight software team)
has maximized the tool’s adoption and utility, and can serve as a model for the introduction of formal specification
methods in other software efforts. Indeed, it seems clear that the tool improved the test team’s productivity and could
result in better-tested flight software.

VIII. Conclusions and Future Work
We have in this paper presented a log analysis specification language offering two forms of specifications: temporal

logic patterns and ∀-automata, both of which can be parameterized with data, primitive and composite (lists, maps).
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The automaton language forms conceptually a subset of the RULER language, limited to the concepts needed by
MSL. In this sense, the automaton language presented here suggests a useful, and yet simple subset of RULER.
The automaton language is more expressive than the pattern language and can be used in cases where this extra
expressiveness is required. Data-parameterized patterns are automatically translated to data-parameterized automata.
A point of particular interest is that engineers find it very effective to write specifications in the pattern language
and check their precise semantics observing the automaton visualizations. The pattern language itself is new and
interesting in the sense that engineers are able to learn it fairly quickly, and they found that it was useful for expressing
most of the realistic properties.

The decision to analyze logs probably turned out to be crucial to the adoption of formal specifications by a
testing team at JPL. Logs were already produced by the system under test, and hence no instrumentation effort on
behalf of the flight software engineers was required (and, therefore, no problem with breaking expected real-time
performance). This meant that the testing team could work more or less in isolation, without slowing the flight software
engineers down. A great amount of research in runtime verification involves instrumentation issues. Automated code
instrumentation is indeed important and interesting. However, it might not be a simple matter for software engineers
to decide what to monitor and how to specify it. For example, specifying pointcuts in aspect-oriented programming
[37] can be a challenge. On the other hand, inserting print statements in code is the world’s most common method for
debugging and understanding programs [38]. Our recommendation is, therefore, to apply formal runtime verification
to logs when automated code instrumentation becomes impractical. Even unstructured logs can be made useful,
though structured logging, with events as records, is generally preferable. We experimented with extracting events
from text logs, using regular expressions to define events, e.g., in this example where command is bound to the
number matched by (\d+):

event success(command) =
‘COMMAND ((\d+)) \(.*?\) SUCCEEDED’

We also hope to establish a connection between requirements engineering and logs, such that requirements become
testable through runtime verification of logs. The common element is the event: requirements should be expressed
as predicates on sequences of events, and logging should produce those events. The reactions we received during
MSL testing suggest that event-sequences may be a very natural way for systems engineers (not limited to software
engineers) working on requirements to formulate properties.

Further future work includes merging a more expressive version of the LOGSCOPE temporal logic with the RULER

system [2].A merge should, however, diminish the distinction between temporal logic and rules (rather than translating
one into the other), while still providing the benefits of both. Another line of work is to explore learning techniques.
The learning techniques implemented are rather simple (just learning the traces seen, abstracted to certain events and
fields). It would be desirable to learn high-level properties about consequences of individual commands, yielding
typically small, human readable specification units, an idea similar to the approach of Perracotta [39]. For example,
for each command one can learn what subsequent events always occur between the command and the next command.
This corresponds to introducing a scope for learning the consequences of a single command. One can learn the specific
order in which subsequent events occur or ignore the order. One can learn minimal and maximal time periods in
between events. We also hope to incorporate classic automata learning results [40,41], though the challenge here
is considerable: the language of input symbols is very large, and it is not feasible, for example, to make precise
language–inclusion queries as required by Angluin’s algorithm. A final goal is to give LOGSCOPE more exposure
inside JPL and exploit its potential in other flight missions.
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Appendix: LogScope Grammar
A. Lexical Elements

〈CODE〉 → {: . . . Python code . . . :}

〈NAME〉 → [a-zA-Z_][a-zA-Z0-9_.]*

〈NUMBER〉 → [0-9]+

〈STRING〉 → " ... "

〈COMMENT〉 → 〈COMMENT1〉 | 〈COMMENT2〉
〈COMMENT1〉 → /* ... */

〈COMMENT2〉 → # ... \n

B. Grammar
1. Specifications

〈specification〉 → [〈CODE〉] 〈monitor〉+

〈monitor〉 → [ignore] 〈monitorspec〉
〈monitorspec〉 → 〈pattern〉 | 〈automaton〉

2. Patterns

〈pattern〉 →
pattern 〈NAME〉 ":" 〈event〉 "=>" 〈consequence〉
[upto 〈event〉]

〈consequence〉 →
〈event〉
| "!" 〈event〉
| "["〈consequencelist〉"]"
| "{"〈consequencelist〉"}"

〈consequencelist〉 →
〈consequence〉 (","〈consequence〉)∗

3. Automata

〈automaton〉 →
automaton 〈NAME〉 "{"

〈state〉∗
[initial 〈actions〉]
[hot 〈names〉]
[success 〈names〉]

"}"

〈state〉 →
[〈modfier〉∗] 〈statekind〉 〈NAME〉 [〈formals〉] "{"
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〈rule〉∗
"}"

〈formals〉 → "("〈names〉")"

〈modifier〉 → hot | initial

〈statekind〉 → always | state | step

〈rule〉 → 〈event〉 "=>" 〈actions〉

〈actions〉 → 〈action〉 ("," 〈action〉)∗

〈action〉 →
〈NAME〉 ["("〈arguments〉")"]
| done
| error

〈arguments〉 → [〈argument〉 ("," 〈argument〉)∗]

〈argument〉 → 〈NUMBER〉 | 〈STRING〉 | 〈NAME〉
〈names〉 → 〈NAME〉 ("," 〈NAME〉)∗

4. Events

〈event〉 →
〈type〉 "{" 〈constraints〉 "}"

[where 〈predicate〉]
[do 〈code〉]

〈constraints〉 →
[〈constraint〉 ("," 〈constraint〉)∗]

〈type〉 →
"COMMAND"
| "EVR"
| "CHANNEL"
| "CHANGE"
| "PRODUCT"

〈constraint〉 → 〈NAME〉 ":" 〈range〉
〈range〉 →

〈NUMBER〉
| 〈STRING〉
| "[" 〈NUMBER〉 "," 〈NUMBER〉 "]"
| "{" 〈indexes〉 "}"
| 〈NAME〉
| "_"

〈indexes〉 → 〈index〉 ("," 〈index〉)∗
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〈index〉 → 〈value〉 ":" 〈range〉
〈value〉 → 〈NUMBER〉 | 〈STRING〉
〈predicate〉 →

〈code〉
| 〈predicate〉 or 〈predicate〉
| 〈predicate〉 and 〈predicate〉
| not 〈predicate〉
| "(" 〈predicate〉 ")"

〈code〉 →
〈CODE〉
| 〈NAME〉 "(" 〈arguments〉 ")"
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